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ABSTRACT. This paper presents two Bayesian alternatives to the chi-squared test for determin-
ing whether a pair of categorical data sets were generated from the same underlying distribution.
It then discusses such alternatives for the Kolmogorov-Smirnov test, which is often used when the
data sets consist of real numbers.

1. Introduction

Let di and do be two sets of elements from a space X, with cardinalities N; and Ns, re-
spectively. View d; and dy as “samples” of two distributions over X, p; and p, respectively.
Based on d; and dg, do we believe that p; and p, are equal (or at least close approximations
of each other), and how confident are we in this belief?

When X is finite, the traditional approach to this common problem is the chi-squared
test. When X is the set of real numbers, the traditional approach is instead the Kolmogorov-
Smirnoff test. (See [2] and references therein for discussions of both tests.) Both of these
tests can be viewed as types of null-hypothesis tests. Accordingly, they suffer from a number
of defects: they are average-data rather than this-data; they can (sort of) rule out the null,
but not “rule it in”; they are very dependent on issues like the “power” and “size” of the
statistic, etc.

Clearly a Bayesian alternative to these tests, properly constructed, would be preferable.
Some have confused such an alternative with, for example, proofs (like in [1]) that in the
proper limit the chi-squared test approximates a Bayesian procedure of some sort. What
is instead needed is a first-principles Bayesian approach to the problem, which in general
may have no relation to tests like chi-squared.

In this paper two such approaches are worked out in detail for the finite X case, and
some possible approaches are mapped out for the uncountable X case. See also [3] for
related work.

2. Finite X—the posterior expected difference approach

Consider the case where X has a finite number of possible values, m. For this scenario,
both p; and py consist of m real numbers, all of which are non-negative, and which sum to
1. I will indicate the i’th component of p; by p;(¢). Also I will indicate the histograms over
the X values induced by di and dy as di(i) and do(i) respectively. So d;(i) is the number
of elements in d; that have the ’th X value.



Let S(p1,p2) be a measure of the similarity between p; and py. For simplicity, in this
paper I will concentrate on the quadratic distance measure, S(p1,p2) = 3,21, (P1(4) —
p2(i))2. However the calculations presented here can be applied to any analytic S by
expanding that S in a Taylor series. Moreover, as is illustrated below, for many non-
quadratic S simple tricks allow one to perform the calculations without resorting to such
an expansion.

In this section I will show how to calculate the posterior expected value of S, S7, and
the posterior expected value of 2, Sy. The formula for S; provides a measure of how much
the data indicates that p; and po differ, and in \/So — (S1)? we have an error bar for that
measure.

First note that

S1

/dpldpz S(p1,p2) P(p1,p2 | di,d2), and
Sy = /dpldm S2(p1,pa) P(p1,p2 | di,dso).

By Bayes’ theorem P(pi,ps | di,d3) o« P(dy | p1) P(d2 | p2) P(p1,p2). Now assume the
d; were created by IID sampling of p;: P(d; | p;) o [}y pi(7)%). All that remains to
fully fix the integrals for S; and Sy is the prior, P(p1, p2).

2.1. Calculating the first moment

Given the preceding, up to an overall proportionality constant, S is given by

7= [dprdps (I] 1) po()=9) Plp1,p) S(p,po) (1)
j=1
The proportionality constant is set by normalization and equals
K = /dp1dp2 [T p1G)29) pa(5)%2D P(py,ps). (2)
j=1

To proceed further we must specify the prior, P(p;,p2). Write

Plon,p) = Flprpo) x 83 p1(0) =1} x [[0(()
j=1 j=1

x S({D_p2(5) — 1} x [] 0(2(5)), 3)
j=1

=1

where the (Dirac) delta functions force each p; to have its components sum to 1, and the
(Heaviside) theta functions force all such components to be non-negative.

Consider the case where F(pi,p2) is analytic, i.e., where it can be written as a sum of
products of powers of the components of p; and ps. Note that the likelihood term in our
integrals is simply a product of powers of the components of p; and ps. Accordingly, if
we know how to calculate S; and Sy for the case where F(p1,ps2) is a constant, by using
appropriate modifications of the d; we can calculate S; and S for any analytic F. (ILe.,



the Dirichlet prior is the conjugate prior for this problem.) Accordingly, without loss of
generality, from now on I will take F(p1,p2) = 1.
The integrals J and K are relatively straight-forward to evaluate [4]:

K(dy,dy) = ™ T(dy(i) + 1) T(da(6) + 1)

. 4

(N1 +m) T'(Ny +m) )

where “I'(.)” is the gamma function. (For current purposes, where the d;(i) are integers,

the gamma function is just a factorial.) Next, use the expansion S(p1,p2) = > it [p1(i) —
p2(i)]* = T {[p1())]* + [p2(i)]* — 2p1(§)p2(i)}. This gives

= i{K[dl +2(3),d2] + Kldi,do+2(z)] — 2K|[dy +1(7),d2 + 1(3)]}- (5)

where by “d; + t(j)” is meant the histogram d; with ¢ extra counts added to the j’th bin.
Note that the total number of counts in d; +¢(j) is N; + ¢; this must be taken into account
when plugging the formula for K into the formula for J.

With Eq.’s (4) and (5) we can calculate the posterior expected value of S, J/K.

2.2. Calculating the second moment

S9 is calculated in a similar way to the calculation of S;. It can be written as S =
where K is the same as in Eq. (4), and Z; and Z, are linear combinations of K’s. To
evaluate this ratio first define ¢g(z,y) = (z + y)!/z! and n; = N; + m — 1. Then

Z1+7>
K

2 g edi(i).3) glda(i). 1)
K ~ E{ gn1,4) D e *
0(di().2) 9(d2(@),2)  g(dr(D),1) gldoi).3) . gldo(i), 4)
02 gmd) L g D) g3 T gmd) O

Note that this can be broken up into five separate sums - doing that, you only need to
perform five separate divisions (no denominator term involves the summation variable 7).
Moreover, the g(.,.) terms can be pre-calculated.

A similar calculation gives the following:

2 23" g(d1(2),2) 9(ch(5),2) | 29(d1(i),2))

i<j g(n174) g(n1a2

4g<d2<z') 2) g(di (5). 1)




As in evaluating Z;/K, it makes sense to break up this expression into a set of sums
(to reduce the number of divisions to six) and precompute quantities like ¢g’s. We would
still seem to have an m? calculation though.

To get around this, use the following identity:

2 u@) v(G) UG VE) = Roul) v()] DU VE] = Y u@) v@) UG VE). (8)

i#]

Next note that each of the ¢’s in the numerators in Eq. (7) is a product of no more than
two terms. This allows us to evaluate all products of those g’s using Eq. (8), and thereby
make the entire calculation linear in m. More precisely, for

i) the first term in Eq. (7), set u =U,v =V, u(j) = d1(j) + 2, and v(j) = d1(j) +
ii) the second term, setu( ) =da(j) +2,v(5) =d2(j) + 1,U(j) = di(j) + 2, and
V(i) =di(j) +

iii) the third term, set uw = U,v =V, and u(j) = da(j) + 2,v(j) = d2(j) +
iv) the fourth term, set u(j) = di(j) + 1,v(j) = d2(4) + 1,U(j) = d1(j) +2 and
V(i) =di() +
v) the fifth term, set u( ) =di(j) + 1,v(j) = do(j) + 1,U(j) = d2(j) + 2, and
V(i) =d2(j) +

vi) the sixth term, set u(j) = di(j) + 1,v(5) =do(3) + 1,U(j) =di(j) + 1, and
V(i) = d2(j) +

The details of plugging all of this into Eq. (7) are not too illuminating, and in the interests
of space are left as an exercise for the reader.

2.3. Comiments

Adding data doesn’t change the number of operations needed to calculate S; and S3. On the
other hand, despite the large degree of cancellation in our equations (e.g., when one divides
Eq. (5) by Eq. (4)), things do get more expensive as one increases m, the number of bins.
This is because we have many products over bins. Here conventional tricks like operating
in logarithm space (so products become sums) are needed to keep the computational time
(not to mention underflow and overflow problems) tractable.

Finally, simple tricks allow evaluation of S; and S, for some non-quadratic choices of
S(p1,p2), without going to the trouble of Taylor expanding such an S. For example, to eval-
uate the posterior moment of the Kullback-Leibler distance between p; and po, one has to be
able to evaluate integrals of the form [ dpidps In(p1(i)) [T7Z,[p1(J 4@ po(5)20)] P(py,ps)

(where d; and dj are in general slight variants of d; and dy). To do this we can use Eq. (4)
and the simple identity z*In(z) = (Opz")|p=q to get logarithms into the integrands [4].

3. Finite X—the ratio of posteriors approach

The technique outlined above assigns measure 0 to the set of events p1 = po. Le., it says
that it is impossible for p; to equal po, regardless of the data. It is possible to use a Bayesian
technique that instead assigns comparable probabilities to the two models M; = {p1 = p2}



and My = {p1 # p2}- To see how first write
P(dy,dy | M) = /dpldp2 P(dy,dy | My1,p1,p2) P(p1,p2 | M1), and then
P(p1,pa | M1) = P(p2 | p1,M1) P(p1| M1) = 6(p1 —p2) G(p1) stuff(p1),
where “stuff(p1)” is the usual expression forcing p; to be a probability distribution.

Write P(dy,dy | My,p1,p2) = P(dy | p1) P(ds | p2), so

Ni! No!
[T 1(di(5))! (d2(5))!

m
P(dy,dy | M) /dp1 G(p1) stuf f(p1 H dl(] )+d2(3)

As usual, to analyze the analytic G case it suffices to consider the case where G is a
constant. Being careful to maintain normalization, for this case

_ (m—=1)V (N1)! (N)! [T741(di(5) + da(4))!
P(dy,ds | My) = N+ Np +m = 1) X ];n:l(dl(j)) Ok

Next write P(dl,dQ | MQ) = fdpldpg P(d1 | pl) P(d2 | pQ) F(pl,pg) Stuff(pl,pg).
Again, take F' constant. (As an aside, if one wants non-constant F' and G, it probably
makes sense to have them “correspond” in some way.) This gives

(9)

m — 1)1? (Ny)! (No)!
Plds.dy | M) = (Nl[(+m—)1])!((ng)+(m21 o (10)

This depends only on N7, No and m; no other aspects of the d; are relevant.
Finally, use Eq.’s (9) and (10) to get the ratio of the posteriors of the models:

P(My | dy,dy) _ P(M) P(dy,dy | M) (11)
P(Mg | dl,dg) P(MQ) P(dl,dz | MQ)'

This posterior ratio for the uniform F and G case is extremely quick to evaluate and in
many respects is at least as “reasonable” in its behavior as the traditional chi-squared test.
Nonetheless, one may want to consider non-uniform F' and G. In particular, non-uniform
F raises/lowers the probabilities of p; — py pairs for which p; # py but which lie close to
{p1 = p2}. So for example, if di = do, then having F favor p; — po pairs that lie close to
{p1 = p2} will “leach” some of the posterior probability of M; into the posterior probability
of My. This is because F will be favoring p; — po pairs that can reasonably explain the
data.

4. The Uncountable X Case

For real-valued X, binning X (so that the techniques of the previous section can be ap-
plied) is sometimes problematic. That is because the final result can depend on the binning
scheme used. One obvious potential solution to this problem is to take inspiration from



the Kolmogorov-Smirnov test: have the statistic concern differences in the cumulative dis-
tribution functions (CDF’s) rather than the density functions directly. For example, one
might define S(p1,p2) = S, [CDFi(i) — CDF,(i)]?. Since the CDF’s tend to be
relatively insensitive to the precise binning, with this scheme how you bin should not be a
big problem.

Another possibility is to use a prior that favors smooth p;, so that p;(j) is close to p;(k)
if bin j is close (in X) to bin k. Such a prior can be used with either of the posterior
ratio or statistic moments approaches. For the latter a CDF-based statistic is not needed;
a conventional (e.g., quadratic) S could be used.

A third possibility is not to bin, but rather consider a parameterized set of p;. Under
this scheme one could use either of the posterior ratio or moments of S approaches. However
now the integrals would be over the parameters of the p; rather than over the p; directly.

Finally, there are some schemes that involve neither binning nor parameters. For exam-
ple, one could define a new space Y = dj Udy and do the analysis in that space. So the
p; are now distributions over Y, and the values in the histograms of the d; are all 0’s and
1’s (assuming there are no delta functions in P(p;(X), p2(X)), so there are no duplicates in
dy Udy). The idea would be to have the prior favor smooth p;, where the degree to which
pi(7) is pushed towards p;(k) depends on the distance between the X values corresponding
to elements j and k of Y.

Future work involves comparing these schemes to other Bayesian procedures (F. Ruggeri—
private communication) related to the Kolmogorov-Smirnov test.
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